1. Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). “Optuna: A Next-generation Hyperparameter Optimization Framework.” In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631.
2. Alt, C., Hübner, M., and Hennig, L. (2019). “Improving Relation Extraction by Pre-trained Language Representations.” In Proceedings of Automated Knowledge Base Construction.
3. Baldini Soares, L., FitzGerald, N., Ling, J., and Kwiatkowski, T. (2019). “Matching the Blanks: Distributional Similarity for Relation Learning.” In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2895–2905, Florence, Italy. Association for Computational Linguistics.
4. Ballesteros, M., Anubhai, R., Wang, S., Pourdamghani, N., Vyas, Y., Ma, J., Bhatia, P., McKeown, K., and Al-Onaizan, Y. (2020). “Severing the Edge Between Before and After: Neural Architectures for Temporal Ordering of Events.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 5412–5417, Online. Association for Computational Linguistics.
5. Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). “Algorithms for Hyper-Parameter Optimization.” In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K. Q. (Eds.), Proceedings of Advances in Neural Information Processing Systems, Vol. 24, pp. 2546–2554. Curran Associates, Inc.