Building a Large Corpus and Pre-trained Language Models from National and Local Assembly Minutes

Author:

Nagafuchi Keiyu1,Kimura Yasutomo23,Kadowaki Kazuma4,Araki Kenji5

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University

2. Otaru University of Commerce

3. Center for Advanced Intelligence Project, RIKEN

4. The Japan Research Institute, Limited

5. Faculty of Information Science and Technology, Hokkaido University

Publisher

Association for Natural Language Processing

Reference32 articles.

1. Araci, D. (2019). “FinBERT: Financial Sentiment Analysis with Pre-trained Language Models.”.

2. Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L., and Auli, M. (2019). “Cloze-driven Pretraining of Self-attention Networks.” In Inui, K., Jiang, J., Ng, V., and Wan, X. (Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5360–5369, Hong Kong, China. Association for Computational Linguistics.

3. Beltagy, I., Lo, K., and Cohan, A. (2019). “SciBERT: A Pretrained Language Model for Scientific Text.” In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620.

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). “Language Models are Few-Shot Learners.” In Advances in Neural Information Processing Systems, Vol. 33, pp. 1877–1901. Curran Associates, Inc.

5. Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., and Androutsopoulos, I. (2020). “LEGAL-BERT: The Muppets Straight Out of Law School.” In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2898–2904.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3