A Table Question Alignment based Cell-Selection Method for Table-Text QA
-
Published:2024
Issue:1
Volume:31
Page:189-211
-
ISSN:1340-7619
-
Container-title:Journal of Natural Language Processing
-
language:en
-
Short-container-title:Journal of Natural Language Processing
Author:
Wu Jian1, Xu Yicheng2, F. Karlsson Börje3, Okumura Manabu1
Affiliation:
1. Tokyo Institute of Technology 2. Nanyang Technological University 3. Beijing Academy of Artificial Intelligence
Publisher
Association for Natural Language Processing
Reference41 articles.
1. Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher, Z., Pham, P., Ravula, A., Sanghai, S., Wang, Q., and Yang, L. (2020). “ETC: Encoding Long and Structured Inputs in Transformers.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 268–284, Online. Association for Computational Linguistics. 2. Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). “Reading Wikipedia to Answer Open-Domain Questions.” In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1870–1879, Vancouver, Canada. Association for Computational Linguistics. 3. Chen, W., Chang, M.-W., Schlinger, E., Wang, W. Y., and Cohen, W. W. (2020). “Open Question Answering over Tables and Text.” ArXiv, abs/2010.10439. 4. Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li, S., Zhou, X., and Wang, W. Y. (2019). “Tabfact: A Large-scale Dataset for Table-based Fact Verification.” ArXiv, abs/1909.02164. 5. Chen, W., Zha, H., Chen, Z., Xiong, W., Wang, H., and Wang, W. (2020). “HybridQA: A Dataset of Multi-hop Question Answering over Tabular and Textual Data.” ArXiv, abs/2004.07347.
|
|