Incorporating Evidence Retrieval into Document-Level Relation Extraction by Guiding Attention

Author:

Ma Youmi1,Wang An1,Okazaki Naoaki1

Affiliation:

1. Tokyo Institute of Technology

Publisher

Association for Natural Language Processing

Reference38 articles.

1. Alt, C., Gabryszak, A., and Hennig, L. (2020). “TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task.” In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1558–1569. Association for Computational Linguistics.

2. Chen, H., Chen, B., and Zhou, X. (2023). “Did the Models Understand Documents? Benchmarking Models for Language Understanding in Document-Level Relation Extraction.” In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6418–6435. Association for Computational Linguistics.

3. Cheng, Q., Liu, J., Qu, X., Zhao, J., Liang, J., Wang, Z., Huai, B., Yuan, N. J., and Xiao, Y. (2021). “HacRED: A Large-Scale Relation Extraction Dataset Toward Hard Cases in Practical Applications.” In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2819–2831. Association for Computational Linguistics.

4. Christopoulou, F., Miwa, M., and Ananiadou, S. (2019). “Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs.” In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4925–4936. Association for Computational Linguistics.

5. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3