Forest Wildfire Detection from Satellite Images using Deep Learning

Author:

Prajith A M 1,Prashant Ankalkoti 1

Affiliation:

1. Jawaharlal Nehru New College of Engineering, Shivamogga, India

Abstract

Forest wildfires pose a significant threat to ecosystems, human lives, and infrastructure, and this project presents a deep learning-based approach for the early detection of forest wildfires from satellite images, employing data preprocessing, model training, and inference steps, where satellite images are pre-processed to enhance features and reduce noise, a deep learning model is trained using convolutional neural networks on a large dataset of labelled images, and the trained model is applied to new images in a sliding window manner to detect potential wildfire regions and generate a heatmap for visualization, resulting in a high accuracy detection system that surpasses traditional methods and aids in early warning and decision-making for fire management authorities

Publisher

Naksh Solutions

Subject

General Medicine

Reference8 articles.

1. Kansal, A., Sharma, A., & Taneja, G. (2015). Forest fire detection using machine learning techniques. Procedia Computer Science, 48, 647-653.

2. Rahul, M., Ramesh, S., Karthikeyan, P., & Saravanan, M. (2020). Convolutional neural network-based forest fire detection using transfer learning. 2020 IEEE International Conference on Recent Trends in Electrical, Control and Communication (RTECC), 1-6.

3. Preeti, T., Nirmal, V., & Lajish, V. L. (2021). Forest fire prediction using machine learning algorithms. 2021 IEEE International Conference on Inventive Computation Technologies (ICICT), 1569-1574.

4. Sheryl Oliver, A., Gandhi, S., & Radha, S. (2020). Forest fire detection using convolutional neural network. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom), 201-206.

5. Ghali, R., Fandi, K., & Kherfi, M. L. (2021). Deep learning-based wildfire pixel segmentation. 2021 International Conference on Advanced Communication Technologies and Networking (CommNet), 1-7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3