Classification of Ancient Modi Script Characters using Convolutional Neural Network

Author:

Panchfula Lohkare 1,Rutuja Pol 1,Snehal Shnde 1,Omkar Zaware 1,Prof. Vasudha Patil 1

Affiliation:

1. Rajiv Gandhi College of Engineering, Karjule, Harya, Maharashtra, India

Abstract

This study aims to develop a character recognition system for the MODI language, which is challenging due to the complexity of character identification. The proposed system uses convolutional neural networks (CNN) and the VGG16 algorithm to accurately identify printed and handwritten MODI characters from scanned papers, regardless of the input paper quality. The training dataset consists of 48 distinct MODI script characters, including vowels and consonants, and is routinely updated with handwritten samples obtained from various sources and the IEEE DataPort dataset. The study demonstrates the feasibility of developing a highly accurate character recognition system that follows the established method of the MODI Script Character Recognizer System (MSCR).

Publisher

Naksh Solutions

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3