Estimation of Parameters of PTRC SRGM using Non-informative Priors

Author:

Singh Rajesh1,Singh Pritee2,Kale Kailash3

Affiliation:

1. RTM Nagpur University, Nagpur, India

2. Institute of Science, Nagpur, India

3. G. N. A. ACS College, Barshitakli, Akola, India

Abstract

Reliability is an essentially important characteristic of software. The reliability of software has been assessed by considering Poisson Type occurrence of software failures and the failure intensity of one parameter say (η_1 ) Rayleigh class. Here, it is assumed that the software contains fixed number of inherent faults say (η_0 ). The scale parameter of Rayleigh density (η_1 ) and fixed number of inherent faults contained in software are the parameters of interest. The failure intensity and mean failure function of this Poisson Type Rayleigh Class (PTRC) Software Reliability Growth Model (SRGM) have been studied. The estimates of above parameters can be obtained by using maximum likelihood method. Bayesian technique has been used to about estimates of η_0 and η_1 if prior knowledge about these parameters is available. The prior knowledge about these parameters is considered in the form of non- informative priors for both the parameters. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies under squared error loss. The Monte Carlo simulation technique is used for calculating risk efficiencies. It is seen that both the proposed Bayes estimators can be preferred over corresponding MLEs for the proper choice of the values of execution time.

Publisher

Naksh Solutions

Subject

General Medicine

Reference20 articles.

1. Abramowitz, M., and Stegun, I. A., (1965), “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, Dover publications, New York.

2. Arfken, G., (1985), "The Gamma Function (Factorial Function)", in Mathematical Methods for Physicists, 3rd ed. Academic Press, FL.

3. Berger, J. O. (1985), “Statistical decision theory and Bayesian analysis”, Springer-Verlag, New York.

4. Boehm, B., Abts, C., Winsor Brown, A., Chulani, S., Clark, B. K., Horowitz, E., Madachy, R., Reifer, D. J. and Steece, B. (2000), “Software Cost Estimation with COCOMO II (with CD-ROM)”, Englewood Cliffs, Prentice-Hall, New Jersey.

5. Box, G. E. P. and Tiao, G. C. (1973), “A Bayesian inference in statistical analysis”, Addison Wesley reading, Massachusetts.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3