Identification of Significant Features and Data Mining Techniques in Predicting Heart Stroke

Author:

Vikram Gude 1,Saravanan V 2,Ishwarya RJ 2,Sathya M 2

Affiliation:

1. Malla Reddy Institute of Technology and Science, Hyderabad, India

2. Mount Zion College of Engineering and Technology, Lena Vilakku, Pudukkottai, Tamil Nadu, India

Abstract

The health-care industry generates a large amount of data, which is processed using certain methodologies. One technique that is frequently utilized is data mining. Heart disease is the leading cause of death on a global scale. This system foresees the risk of heart disease developing. The results of this system give you a % likelihood of getting heart disease. Medical parameters are utilized to categories the datasets. This system uses a data mining classification algorithm to analyze such parameters. The datasets are processed in Python programming using two main Machine Learning Algorithms: Decision Tree Approach and Naïve Bayes Algorithm, with the latter showing to be the best algorithm in terms of heart disease accuracy.

Publisher

Naksh Solutions

Subject

General Medicine

Reference34 articles.

1. M. M. Rahman and D. N. Davis, Addressing the class imbalance problem in medical datasets, International Journal of Machine Learning and Computing, Vol.3, No.2, 2013.

2. H. L. Yin and T. Y. Leong, A model driven approach to imbalanced data Sampling in medical decision making, Stud Health Techno Inform. 2010; 160(Pt 2):856-60.

3. Q. GU, Z. Cai, L. Zhu & B. Huang, data mining on imbalanced data sets, International Conference on Advanced Computer Theory and Engineering, 2008.

4. V. Ganganwar, An overview of classification algorithms for imbalanced Datasets, International Journal of Emerging Technology and Advanced Engineering, vol.2, issue 4 2012

5. K. Kumar and Abhishek, Artificial Neural Networks for Diagnosis ofKidney Stones Disease, I.J. Information Technology and Computer Science, 7, 20-25, 2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3