A Framework for Semantic Clustering of News Articles Based on Fuzzy

Author:

Nidhi Dewan 1,Shagufta Farzana 1

Affiliation:

1. Dr. C. V. Raman University, Bilaspur, India

Abstract

Text mining is a process that uses data mining approaches to extract valuable information held in the hidden form in textual data. In this paper, we are proposing a framework for fuzzy clustering of news articles. These news articles originate on different news portals on the web. The data obtained need to be stored in a central database and then pre-processing reduces the noise. The keyword extraction is used to extract keywords from the text and then word-frequency vector is generated. On these vectors, distance measure or similarity measure function is used to find the similarity between articles. One article may belong to more than one cluster so fuzzy context vector must be generated. Mutual Information can be used to find fuzzy membership values. The threshold values are required for the identification of clusters. The proposed framework shows that fuzzy clustering does not restrict each news article to belong exactly to one cluster. Therefore this framework when applied to information retrieval systems or other application systems, system gives better performance and relevance to the users.

Publisher

Naksh Solutions

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3