Robust Deepfake Detection System with Deep Learning Techniques

Author:

Yanamala Bhuvaneswari 1,Sanjana Samba 1,Nemani Hiranmayai 1,Dr Halavath Balaji 1

Affiliation:

1. Sreenidhi Institute of Science and Technology, Hyderabad, India

Abstract

This comprehensive study investigates the pervasive issue of deep fakes within the context of deep learning applications, focusing on their detection and production. Utilizing a diverse array of deep learning algorithms, including InceptionResnetV2, VGG19, CNN, Xception, InceptionV3, EfficientNetB1, DenseNet121, Hybrid Model, LSTM, ResNext-LSTM, and MRI-GAN, the research systematically evaluates their effectiveness in detecting deep fakes. Results reveal varying levels of accuracy, with Xception emerging as the most precise algorithm, achieving an accuracy of 99.32%. Notably, InceptionResnetV2 and DenseNet121 also demonstrate robust performance, with accuracies surpassing 99%. However, certain models like VGG19 and LSTM exhibit lower accuracy rates, underscoring the need for further refinement. These findings underscore the urgent necessity for robust detection mechanisms amidst the proliferation of malicious deep fakes, safeguarding against potential societal ramifications such as misinformation and privacy breaches.

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3