An Efficient Image Compression Technique using Long Short-Term Memory Networks (LSTM)

Author:

Gunja Mandogade 1,Gaurav Morghare 1

Affiliation:

1. Oriental Institute of Science and Technology, Bhopal, India

Abstract

The emergence of big data has imposed significant challenges on data storage and transmission. One pressing issue is leveraging deep learning techniques to achieve superior compression ratios and enhance image quality. Recurrent Neural Networks (RNNs) offer a promising avenue for controlling image bit rates iteratively, thereby enhancing compression performance. However, integrating Long Short-Term Memory (LSTM) into RNNs to address long-term dependencies increases model complexity. To expedite training and enhance image reconstruction quality, this study proposes several innovations.Initially, we enhance the activation function within LSTM to more effectively manage information retention and omission, thereby reducing parameter count and expediting training. Additionally, we introduce an image recovery block within the decoder to reconstruct high-resolution images. Finally, to expedite loss convergence, we replace L1 loss with SmoothL1 loss. Experimental outcomes demonstrate the efficacy of our approach, showcasing higher compression ratios

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3