A Perspective Study on Speech Recognition

Author:

Sana Fatema N. Ali 1,Prof. S. T. Khandare 1

Affiliation:

1. Babasaheb Naik College of Engineering, Pusad, Maharashtra, India

Abstract

Emotions play an extremely important role in human mental life. It is a medium of expression of one’s perspective or one’s mental state to others. Speech Emotion Recognition (SER) can be defined as extraction of the emotional state of the speaker from his or her speech signal. There are few universal emotions including Neutral, Anger, Happiness, and Sadness in which any intelligent system with finite computational resources can be trained to identify or synthesize as required. In this work spectral and prosodic features are used for speech emotion recognition because both of these features contain the emotional information. Mel-Frequency Cepstral Coefficients (MFCC) is one of the spectral features. Fundamental frequency, loudness, pitch and speech intensity and glottal parameters are the prosodic features which are used to model different emotions. The potential features are extracted from each utterance for the computational mapping between emotions and speech patterns. Pitch can be detected from the selected features, using which gender can be classified. The audio signal is filtered using a method known as feature extraction technique. In this article, the feature extraction technique for speech recognition and voice classification is analyzed and also centered to comparative analysis of different types of Mel frequency cepstral coefficients (MFCC) feature extraction method. The MFCC technique is used for deduction of noise in voice signals and also used for voice classification and speaker identification. The statistical results of the different MFCC techniques are discussed and finally concluded that the delta-delta MFCC feature extraction technique is better than the other feature extraction techniques..

Publisher

Naksh Solutions

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3