A Deep Learning Model for Detection Cancer in Breast

Author:

Sruthi Tirunagari 1,Veeramalla Nikitha 1,Jasti Padmavathi 1,Anuradha Reddy 1,Mamatha Kurra 1

Affiliation:

1. Malla Reddy Institute of Technology & Science, Maisammaguda, Dhulapally, Secunderabad

Abstract

It is exceedingly difficult to identify and classify breast cancer. In reality, a tumor or cancer is a complicated process that involves several changes to the mammography images. Additionally, distinct tissues are used to describe various sections of the image that exhibit variable and high appearance. The primary advantage of this method is image classification for cancer prediction and performance improvement. On an open-source dataset, we trained and tested the application of our research. Python 3 will be used to create this project. The Jupiter IDE will be used to deploy the project. The overall goal of this project is to provide the highest level of performance and efficiency.

Publisher

Naksh Solutions

Subject

General Medicine

Reference34 articles.

1. Ghantasala, G. P., Reddy, A., Peyyala, S., & Rao, D. N. (2021). Breast Cancer Prediction In Virtue Of Big Data Analytics. INTERNATIONAL JOURNAL OF EDUCATION, SOCIAL SCIENCES AND LINGUISTICS, 1(1), 130-136.

2. Ghantasala, G. P., Kumari, N. V., &Patan, R. (2021). Cancer prediction and diagnosis hinged on HCML in IOMT environment. In Machine Learning and the Internet of Medical Things in Healthcare (pp. 179-207). Academic Press.

3. Ghantasala, G. P., Reddy, A. R., &Ayyappa, R. M. K. (2022). Protecting Patient Data with 2F-Authentication. Cognitive Intelligence and Big Data in Healthcare, 169.

4. G S PradeepGhantasala, D. NageswaraRao, Mandal K (2021) MACHINE LEARNING ALGORITHMS BASED BREAST CANCER PREDICTION MODEL. Journal of Cardiovascular Disease Research, 12 (4), 50-56. doi:10.31838/jcdr.2021.12.04.04

5. Ghantasala, G. P., &Kumari, N. V. (2021). Breast Cancer Treatment Using Automated Robot Support Technology ForMri Breast Biopsy. INTERNATIONAL JOURNAL OF EDUCATION, SOCIAL SCIENCES AND LINGUISTICS, 1(2), 235-242.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3