Survey on Deep Fake Detection using Deep Learning

Author:

Dr. Archana B 1,Arjun K N 1,Dhamini J 1,Ghanalakshmi 1,Swasthishree N S 1

Affiliation:

1. Vidya Vikas Institute of Engineering and Technology, Mysuru, Karnataka, India

Abstract

The rise of deep fake technology poses significant challenges to the authenticity and integrity of visual content on digital platforms. This paper presents the development of a web application aimed at detecting deep fake images and videos through the implementation of advanced deep learning models. Leveraging research in the field of deep fake detection, this application integrates state-of-the-art algorithm like CNNs for accurate classification tasks. Key features of the application include a user-friendly interface allowing for the upload and analysis of images and videos, leveraging the trained models to detect potential deep fakes. Additionally, the web application incorporates a sophisticated detection methods to enhance accuracy and reliability. The deployment of the web application on popular platforms aims to provide users with a tool to verify the authenticity of visual content, thereby mitigating the potential negative consequences of deep fake manipulation. Continuous monitoring, updates, and adaptation to emerging deep fake techniques are prioritized to ensure the web applications effectiveness and relevance in an ever-evolving landscape of digital content manipulation

Publisher

Naksh Solutions

Reference10 articles.

1. [1] Ankur Nagulwar, Sejal Shingvi, Palak Takhtani. "DEEP FAKE VIDEO DETECTION USING DEEP LEARNING." International Research Journal of Modernization in Engineering Technology and Science (2022): Volume:04/Issue:05

2. [2] S Jeevidha, S. Saraswathi, Kaushik J B, Preethi K, NallamVenkataramaya. "DEEP FAKE VIDEO DETECTION USING RES- NEXT CNN AND LSTM" International Journal of Creative Research Thoughts (IJCRT), 2023.

3. [3] Yash Doke, PrajwalitaDongare, Vaibhav Marathe, Mansi Gaikwad, Mayuri Gaikwad. “DEEP FAKE VIDEO DETECTION USING DEEP LEARNING”, International Journal of Research Publication and Reviews, Vol 3, no 11, pp 540-544, November 2022.

4. [4] Wahidul Hasan Abir, Faria Rahman Khanam, Kazi Nabiul Alam, Myriam Hadjouni , Hela Elmannai , Sami Bourouis , Rajesh Dey and Mohammad Monirujjaman Khan.” DETECTING DEEPFAKE IMAGES USING DEEP LEARNING TECHNIQUES AND EXPLAINABLE AI METHODS”. Intelligent Automation and Soft Computing (IASC), 2023: Vol.35, No.2.

5. [5] Zeina Ayman, Natalie Sherif, Mariam Mohamed, Mohamed Hazem, Diaa Salama.” DeepFakeDG: A DEEP LEARNING APPROACH FOR DEEP FAKE DETECTION AND GENERATION”. Journal of Computing and Communication Vol.2, No.2, 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3