Fake Social Media Profile Detection and Reporting Using Machine Learning

Author:

Aniket Agravat 1,Umang Makwana 1,Sahil Mehta 1,Devashish Mondal 1,Sushant Gawade 1

Affiliation:

1. Universal College of Engineering, Mumbai, Maharashtra, India

Abstract

Our research focuses on utilizing machine learning techniques, encompassing natural language processing and computer vision, to create an automated system for the detection and reporting of fake social media profiles across various platforms. Our approach involves feature extraction from both textual and visual content, followed by the application of machine learning models to classify profiles as fake or genuine. This system operates in real-time, monitoring user activity and promptly flagging suspicious profiles for user- initiated reporting. By combining the power of machine learning with cross-platform compatibility and user feedback, our solution aims to enhance online safety by swiftly identifying and addressing fraudulent social media profiles, thus fostering more secure and trustworthy online communities.

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3