OCR Using Convolution Neural Network in Python with Keras and TensorFlow

Author:

Bhadra Sandipta1,Aneja Kritika1,Mandal Satyaki1

Affiliation:

1. Vellore Institute of Technology, Chennai, Tamil Nadu, India

Abstract

We aim to design an expert system for,” OCR using Neural Network” that can effectively recognize specific character of type style using the Artificial Neural Network Approach. We are pre-processing the input image, extracting the features, and then using the classification schema along with training of system to acknowledge the text. During this approach, we have trained the system to seek out the similarities, and also the differences among various handwritten samples. It takes the image of a hand transcription and converts it into a digital text. The extension of MNIST digits dataset has been used and A-Z characters in both uppercase and lowercase to detect handwritten text and convert it into digital form using Convolutional Neural Networks model, abbreviated as CNN, for text classification and detection also we are using keras graph to predict alphanumeric characters drawn using a finger and linked our handwriting text recognition program using keras and TensorFlow librar.

Publisher

Naksh Solutions

Subject

General Medicine

Reference20 articles.

1. Gil Levi and Tal Hassner, "Offline Handwritten Digit Recognition Using Neural Network", International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 9, pp. 4373 -4377, 2013.

2. Nimisha Jain, Kumar Rahul, Ipshita Khamaru. AnishKumar Jha, Anupam Ghosh (2017). “Hand Written Digit Recognition using Convolutional Neural Network (CNN)”, International Journal of Innovations & Advancement in Computer Science, IJIACS,ISSN 2347– 8616,Volume 6, Issue 5

3. Dr. Kusumgupta2 ,"A Comprehensive Review On Handwritten Digit Recognition Using Various Neural Network Approaches", International Journal Of Enhanced Research In Management & Computer Applications, Vol. 5,No. 5, Pp. 22-25, 2016

4. Saeed AL-Mansoori, "Intelligent Handwritten Digit Recognition using Artificial Neural Network", Int. Journal of Engineering Research and Applications, vol. 5, no. 5, pp. 46-51, 2015.

5. Haider A. Alwzwazy1, Hayder M. Albehadili2, Younes S. Alwan3, Naz E. Islam4, "Handwritten Digit Recognition using Convolutional Neural Networks", International Journal of Innovative Research in Computer and Communication Engineering, vol. 4, no. 2, pp. 1101- 1106, 2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3