Video Processing Based Tracking and Vehicle Identification

Author:

Pratham N. Surjuse 1,Shweta G. Deogade 1,Shantanu S. Dethe 1,Sakshi P. Chahare 1,Dr. Nitin Janwe 1

Affiliation:

1. Rajiv Gandhi College Of engineering Research and Technology, Chandrapur, India

Abstract

Video surveillance and analysis have become integral components of various domains such as security, traffic management, and urban planning. However, effective tracking and identification of vehicles in video streams remain challenging due to environmental factors, occlusions, and complex motion patterns. This research proposes a novel approach leveraging YOLOv5, a state-of-the-art object detection algorithm, for real-time vehicle tracking and identification. By integrating YOLOv5 with advanced video processing techniques, including preprocessing for enhancing video quality and Kalman filtering for object tracking, the proposed system achieves improved accuracy and robustness in diverse scenarios. Experimental results demonstrate the effectiveness of the approach, showcasing high accuracy in vehicle tracking and reliable identification performance. The findings suggest significant potential for practical applications in enhancing video surveillance systems for better security and traffic management. Additionally, avenues for future research are discussed to further enhance the capabilities of video-based vehicle tracking and identification systems

Publisher

Naksh Solutions

Reference7 articles.

1. [1] Redmon, J., &Farhadi, A. (2018). YOLOv5: An Incremental Improvement. arXiv preprint arXiv:1804.02767.

2. [2] Zuraimi, M. a. B. &Zaman, F. H. K. Vehicle detection andtracking using YOLO and DeepSORT.2021 IEEE 11thIEEE Symposium on Computer Applications & IndustrialElectronics(ISCAIE), 2021.IEEE, 23-29.

3. [3] Javidi, M. H., Mohammadi, A., Pourreza, H., &Mehrshad, N. (2021). Vehicle detection and classification using YOLOv5. IEEE Access, 9, 115576-115586.

4. [4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. (2020) - This paper introduces YOLOv5, which is widely used for object detection tasks.

5. [5] Davis, J., &Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning (pp. 233-240).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3