Road Accident Severity Prediction using Machine Learning

Author:

R. Arunachalam 1,S. Peararulselvi 1,M. Saraswathi 1,M. Saraswathi 1

Affiliation:

1. Anjalai Ammal Mahalingam Engineering College , Thiruvarur , Tamil Nadu , India

Abstract

Road accidents have become a major concern globally, causing a significant number of fatalities and injuries every year. The aim of this project is to predict road accidents severity using machine learning techniques, in order to reduce their occurrence and mitigate the associated risks. The project uses data collected from various sources such as accident reports, weather conditions, and road infrastructure to train and evaluate various supervised learning algorithms and predict the accident severity. Four algorithms were compared, including Decision Tree, Naive Bayes, Random forest . Most probably occurring road accident locations are identified and that particular region is indicated as black pot. The proposed method can be used to provide real-time risk information to road users, helping them to make informed decisions and avoid potential accidents. The project highlights the importance of using machine learning techniques in road safety analysis, providing a foundation for further research in this field

Publisher

Naksh Solutions

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3