Overview of the Algorithms used in Wireless Sensor Networks for Enhancement of Energy Efficiency Routing Protocols

Author:

Sangita Mahendra Rajput 1,Dr Ram Mohan Singh Bhadoria 1

Affiliation:

1. Sunrise University, Alwar, Rajasthan, India

Abstract

Wireless Sensor Networks (WSNs) play a crucial role in various applications, including environmental monitoring, healthcare, and industrial automation. Maximizing the network lifetime and energy efficiency are paramount for ensuring the sustainability and effectiveness of WSNs. In this review, we analyze recent research efforts aimed at optimizing WSNs' lifetime through clustering algorithms. We delve into various metaheuristic algorithms such as the Grey Wolf Algorithm, Firefly Algorithm, Whale Optimization Algorithm, Dragonfly Algorithm, and others, adapted and enhanced specifically for WSNs. Additionally, we explore application-specific protocols and energy-efficient communication strategies tailored for WSNs. Through a comprehensive review, we identify research gaps and challenges in the existing literature and propose future directions for enhancing WSNs' performance and sustainability

Publisher

Naksh Solutions

Reference29 articles.

1. [1] N. Bacanin, U. Arnaut, M. Zivkovic, T. Bezdan, and T. A. Rashid, “Energy efficient clustering in wireless sensor networks by opposition-based initialization bat algorithm,” in Computer Networks and Inventive Communication Technologies, S. Smys, R. Bestak, R. Palanisamy, and I. Kotuliak, Eds., vol. 75 of Lecture Notes on Data Engineering and Communications Technologies, Springer, Singapore, 2022.

2. [2] M. Zivkovic, N. Bacanin, T. Zivkovic, I. Strumberger, E. Tuba, and M. Tuba, “Enhanced Grey wolf algorithm for energy efficient wireless sensor networks,” in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 87–92, Novi Sad, Serbia, 2020.

3. [3] M. Zivkovic, N. Bacanin, E. Tuba, I. Strumberger, T. Bezdan, and M. Tuba, “Wireless sensor networks life time optimization based on the improved firefly algorithm,” in 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 1176–1181, Limassol, Cyprus, 2020.

4. [4] N. Bacanin, M. Antonijevic, T. Bezdan, M. Zivkovic, and T. A. Rashid, “Wireless sensor networks localization by improved whale optimization algorithm,” G. Mathur, M. Bundele, M. Lalwani, and M. Paprzycki, Eds., Springer.

5. [5] M. Zivkovic, T. Zivkovic, K. Venkatachalam, and N. Bacanin, “Enhanced dragonfly algorithm adapted for wireless sensor network lifetime optimization,” in Data Intelligence and Cognitive Informatics. Algorithms for Intelligent Systems, I. Jeena Jacob, S. Kolandapalayam Shanmugam, S. Piramuthu, and P. Falkowski-Gilski, Eds., Springer, Singapore, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3