Learning Adaptive Control of a UUV Using a Bio-Inspired Experience Replay Mechanism

Author:

Dr. Pradeep V 1,Mr. Sreedeep P 1,Ms. Srusti Vaibhav 1,Ms. Sneha 1,Mr. Somesh K H 1

Affiliation:

1. Alva’s Institute of Engineering and Technology, Mijar, Karnataka, India

Abstract

This paper provides an in-depth analysis of the present state of Deep Reinforcement Learning (DRL) applications in Unmanned Underwater Vehicles (UUVs). Addressing the persistent challenges related to data inefficiency and performance degradation in physical platforms, particularly when faced with unforeseen variations, the paper introduces the innovative Biologically-Inspired Experience Replay (BIER) method. This approach incorporates two distinct memory buffers to enhance learning efficiency. The paper assesses the generalization capabilities of BIER through training neural network controllers on diverse tasks, spanning from inverted pendulum stabilization to simulating half-cheetah running. Furthermore, BIER is integrated with the Soft Actor-Critic (SAC) method for UUV stabilization under unknown environmental dynamics. Evaluation in a ROS-based UUV simulator, incorporating increasingly complex scenarios, showcases BIER's superior performance over traditional Experience Replay (ER) methods, achieving optimal UUV control in half the time. This review contributes valuable insights into the challenges and advancements in applying DRL methods to UUVs, highlighting the BIER method's promising potential to improve adaptability and efficiency in UUV manoeuvring tasks, leading to more robust and agile underwater vehicle control systems for more robust and agile underwater vehicle control systems. .

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3