Music Genre Classification Using Deep Learning with KNN

Author:

Ponlatha Dr. S.1,B Mathisalini1,K. A Deepthisri1,M Kalaiyarasi.1,V Kowshika.1

Affiliation:

1. Mahendra Engineering College, Namakkal, Tamil Nadu, India

Abstract

Music genre is a conventional category that predicts the genre of music belonging to tradition or set of conventions. A music platform, with total assets of $26 billion, is ruling the music streaming stage today. At present, it has a huge number of tunes and it is information base and claims to have the right music score for everybody. Like, Spotify, Amazon music, Wynk has put a great deal in examination to further develop the manner in which clients find and pay attention to music. AI is at the centre of their examination. From NLP to Collaborative sifting to Deep Learning, All music platforms utilizes them all. Tunes are examined dependent on their advanced marks for certain elements, including rhythm, acoustics, energy, danceability, and so forth, to answer that incomprehensible old first-date inquiry. Organizations these days use music arrangement, either to have the option to put suggestions to their clients (like Spotify, Soundcloud) or just as an item (for instance, Shazam). Deciding music sorts is the initial phase toward that path. AI procedures have ended up being very fruitful in removing patterns and examples from a huge information pool. Similar standards are applied in Music Analysis moreover. Machine learning techniques are achieved in some recent years and rarely in deep learning. Most of the current music genre classification uses Machine learning techniques. In this, we present a music dataset which includes many genres like Rock, Pop, folk, Classical and many genres. A Deep learning approach is used in order to train and classify the system using KNN.

Publisher

Naksh Solutions

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Dive: Music Genre Classification with Convolutional Neural Networks;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3