Scalable and Robust Fraud Detection in Distributed Systems

Author:

Vijaya R Varma Pothuri 1

Affiliation:

1. Lead Software Engineer, Salesforce, San Francisco, USA

Abstract

The rise of distributed systems has increased the need for advanced fraud detection mechanisms. Cybercriminals increasingly exploit the distributed and decentralized nature of these systems, posing challenges for traditional fraud detection techniques that rely on centralized data analysis. In this paper, we propose a novel approach to fraud detection that is decentralized, scalable, and capable of real-time detection across diverse nodes in distributed systems. Our solution combines machine learning techniques, including anomaly detection and classification algorithms, with decentralized consensus mechanisms. We evaluate our approach using a large-scale financial dataset and outline its performance in terms of accuracy, latency, and scalability. This work also discusses challenges such as data privacy, adversarial attacks, and regulatory compliance, providing directions for future research

Publisher

Naksh Solutions

Reference19 articles.

1. Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science, 17(3), 235-255.

2. Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-based fraud detection research. Artificial Intelligence Review, 34(4), 301-324.

3. Biggio, B., Nelson, B., & Laskov, P. (2012). Poisoning attacks against support vector machines. In Proceedings of the 29th International Coference on International Conference on Machine Learning (pp. 1467-1474).

4. Rossow, C., Dietrich, C. J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., & Sperotto, A. (2013). Prudent practices for designing malware experiments: Status quo and outlook. In 2012 IEEE Symposium on Security and Privacy (pp. 65-79).

5. Singh, S., & Gahlot, A. (2015). Mitigating man-in-the-middle attacks in distributed networks. International Journal of Network Security & Its Applications, 7(1), 35-44.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3