Machine Learning Model for IRIS Flower Classification using Tensor Flow and PyTorch

Author:

Vijayaragavan Dr. Kalaivazhi1,Prakathi S.1,Rajalakshmi S.1,Sandhiya M1

Affiliation:

1. Anjalai Ammal Mahalingam Engineering College, Thiruvarur, India

Abstract

Machine learning is a subfield of artificial intelligence, which is learning algorithms to make decision-based on data and try to behave like a human being. Classification is one of the most fundamental concepts in machine learning. It is a process of recognizing, understanding, and grouping ideas and objects into pre-set categories or sub-populations. Using precategorized training datasets, machine learning concept use variety of algorithms to classify the future datasets into categories. Classification algorithms use input training data in machine learning to predict the subsequent data that fall into one of the predetermined categories. To improve the classification accuracy design of neural network is regarded as effective model to obtain better accuracy. However, design of neural network is usually consider scaling layer, perceptron layers and probabilistic layer. In this paper, an enhanced model selection can be evaluated with training and testing strategy. Further, the classification accuracy can be predicted. Finally by using two popular machine learning frameworks: PyTorch and Tensor Flow the prediction of classification accuracy is compared. Results demonstrate that the proposed method can predict with more accuracy. After the deployment of our machine learning model the performance of the model has been evaluated with the help of iris data set.

Publisher

Naksh Solutions

Reference26 articles.

1. Aqel, M.M., Jena, R.K., Mahanti, P.K. and Srivastava (2009) ‘Soft Computing Methodologies in Bioinformatics’, European Journal of Scientific Research, vol.26, no 2, pp.189-203.

2. AvcıMutlu, TülayYıldırım(2003) ‘Microcontroller based neural network realization and IRIS plant classifier application’, International XII. Turkish Symposium on Artificial Intelligence and Neural Network

3. Cho, Sung-Bae.andDehuri, Satchidananda (2009) ‘A comprehensive survey on functional link neural network and an adaptive PSO–BP learning for CFLNN, Neural Comput&Applic’ DOI 10.1007/s00521-009-0288-5.

4. Fisher, A. W., Fujimoto, R. J. and Smithson, R. C.A. (1991) ‘A Programmable Analog Neural Network Processor’, IEEE Transactions on Neural Networks, Vol. 2, No. 2, pp. 222-229.

5. Fu, L.(1991) ‘ Rule learning by searching on adapted nets. In Proceedings of National Conference on Artificial Intelligence’ Anaheim, CA, USA, pp. 590-595.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3