Deep Learning Approach for Brain Tumor Classification using SVM

Author:

J. Chitti Babu 1,K. Janani 1,L. Greeshma 1,D. Dillibabu 1,G. Praveen Kumar 1,B. Sandhya 1

Affiliation:

1. Sri Venkatesa Perumal College of Engineering and Technology, Puttur, AP, India

Abstract

Object detection plays a major role in many areas like medical imaging, aerial surveillance, optimal manipulation and analysis, surgical microscopes, etc. The objective of this paper is to develop a model for brain tumors detection and classification i.e., to classify whether the tumor is cancerous or non-cancerous using SVM algorithm. Earlier many have detected using ANN which works on Empirical Risk Minimization. We are using Support Vector Machine algorithm that works on structural risk minimization to classify the images. The SVM algorithm is applied to medical images for the tumor extraction, and a tumor classification function. This paper presents a prototype for SVM-based object detection, which classifies the images and evaluates whether the classified image is cancerous or non-cancerous.

Publisher

Naksh Solutions

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3