Breast Cancer Detection System

Author:

Prof. R. Waghmare 1,Ronak Jagade 1,Swayam Chopda 1,Varad Salgar 1

Affiliation:

1. AISSMS Polytechnic, Pune, India

Abstract

Breast cancer "is a major global health concern is breast cancer, for which early detection is essential to effective treatment and higher survival rates. In this work, we suggest a unique method for detecting breast cancer by using cutting-edge machine learning techniques on data from medical imaging tests, especially mammograms. Our approach combines feature extraction and deep learning methods to improve detection efficiency and accuracy. We performed tests on a sizable sample of mammography pictures, and the overall performance, sensitivity, and specificity showed promise. The suggested solution has the potential to improve patient outcomes and healthcare management by supporting radiologists in the early diagnosis of breast cancer..

Publisher

Naksh Solutions

Reference5 articles.

1. Al-masni, M.A., Al-Antari, M.A., Park, J.M., Gi, G., Han, S.M., Kim, T.S., Rivera, P., Valarezo, E., Choi, M.T., Kim, H.T. and Kim, T.S., 2017. Breast cancer detection using deep convolutional neural networks and support vector machines. Journal of Medical Imaging and Health Informatics, 7(6), pp.1234-1238.

2. Dandapat, S., Maheshwari, A., Verma, H., Singh, A., &Dandapat, S. (2020). A comparative analysis of machine learning algorithms for breast cancer detection using mammographic dataset. IEEE Access, 8, 137124-137133.

3. Dhahri, H., & Ben Ayed, S. (2018). Breast cancer detection based on extreme learning machine approach. In 2018 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART) (pp. 1-6). IEEE.

4. Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R., & Diaz, O. (2018). Breast cancer histopathology image analysis: A review. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 502-506). IEEE.

5. Khalid, S., Afzal, M., Haider, M.A., Khan, S.A., &Jameel, R. (2019). Computer-aided breast cancer detection using deep learning. In 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-6). IEEE.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3