Market Driven Crop Price Prediction

Author:

Lahari V 1,Manjunath V2 1,Pooja N 1,Ms. Rekha B N 1

Affiliation:

1. Sir M Visvesvaraya Institute of Technology, Bengaluru, India

Abstract

The global agricultural sector faces significant challenges in ensuring food security, optimizing resource utilization, and adapting to changing environmental conditions. Accurate crop price prediction is crucial for addressing these challenges, yet existing methodologies often lack the ability to integrate market dynamics effectively. This paper proposes a novel framework for market- driven crop price prediction, leveraging advanced machine learning techniques and market data integration to enhance the accuracy and relevance of predictions. The crop price predictor can be applied to minimize losses when adverse situations occur. Farmers can use this system to maximize crop yield rates when the potential exists for favorable growing conditions

Publisher

Naksh Solutions

Reference9 articles.

1. [1] Monali Paul, Ashok Verma, “Analysis of crop yield rates using data mining techniques to increase the yield rates of farmers” 2015 International Conference on Computational Intelligence and Communication Networks

2. [2] Abdullah Na, “An IoT based system for crop monitoring” 2016 International Conference of Information Technology.

3. [3] Awanit Kumar, “Prediction of crops using K-Means and Fuzzy Logic” IJCSMC, 2015.

4. [4] R. Nagini, “Agriculture yield prediction using predictive analytic techniques” 2nd International Conference on Contemporary Computing and Informatics, 2016.

5. [5] Rakesh Kumar, “Crop selector method in order to increase the crop yield profit using ANN” ICSTM, 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3