Handwritten Character Recognition: A Comparative Study

Author:

Aishani Sengupta 1,Anubrata Mukherjee 1,Tanaya Pal 1,Sourav Das 1

Affiliation:

1. Narula Institute of Technology, Kolkata, India

Abstract

Handwriting recognition is a technique used to interpret intelligible handwritten input and convert it into digital text using Machine Learning tools. This research paper provides a comparison of the application of CRNN and CNN for handwriting recognition, using a dataset containing about 370,000 handwritten names. Our experiments demonstrate that the CRNN hybrid model produces the highest accuracy compared to the CNN model. This paper summarises contributions reported on the A-Z Handwritten Alphabets in .csv format dataset for handwritten character recognition. This dataset has been extensively used to validate novel techniques in computer vision. This paper makes a distinction between those works using some kind of data augmentation and works using the original dataset

Publisher

Naksh Solutions

Reference11 articles.

1. Nisha Sharma et al, “Recognition for handwritten English letters: A Review” International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 7, January 2013.

2. Shubham Sanjay Mor, Shivam Solanki, Saransh Gupta and al, HANDWRITTEN TEXT RECOGNITION: with Deep Learning and Android, International Journal of Engineering andAdvanced Technology (IJEAT), 2019

3. TensorFlow, Recurrent Neural Networks (RNN) with Keras, https://www.tensorflow.org/guide/keras/rnn

4. D. K. Patel, T. Som, and M. K Singh,” Improving the Recognition of Handwritten Characters using Neural Network through Multiresolution Technique and Euclidean Distance Metric”, International Journal of Computer Applications (0975 – 8887) Volume 45– No.6 May 2012.

5. Harald Scheidl, build a Handwritten Text Recognition System using TensorFlow, https://towardsdatascience.com/build-a-handwritten-text-recognition-systemusing-tensorflow-2326a3487cd5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3