Wild Animal Classifier Using CNN

Author:

Sahil Faizal 1,Sanjay Sundaresan 1

Affiliation:

1. Vellore Institute of Technology, Chennai, India

Abstract

Classification and identification of wild animals for tracking and protection purposes has become increasingly important with the deterioration of the environment, and technology is the agent of change which augments this process with novel solutions. Computer vision is one such technology which uses the abilities of artificial intelligence and machine learning models on visual inputs. Convolution neural networks (CNNs) have multiple layers which have different weights for the purpose of prediction of a particular input. The precedent for classification, however, is set by the image processing techniques which provide nearly ideal input images that produce optimal results. Image segmentation is one such widely used image processing method which provides a clear demarcation of the areas of interest in the image, be it regions or objects. The Efficiency of CNN can be related to the preprocessing done before training. Further, it is a well-established fact that heterogeneity in image sources is detrimental to the performance of CNNs. Thus, the added functionality of heterogeneity elimination is performed by the image processing techniques, introducing a level of consistency that sets the tone for the excellent feature extraction and eventually in classification.

Publisher

Naksh Solutions

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Convolutional Neural Network to Minimize Wildlife-Vehicle Collisions;2023 5th International Conference on Cybernetics and Intelligent System (ICORIS);2023-10-06

2. Image Labeling Using Convolutional Neural Network;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3