Efficient Malware Detection in Android Devices to Improve Cyber Security

Author:

Faizur Rahaman.R 1,Dr. S. Prasanna 1

Affiliation:

1. Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu

Abstract

The project introduces a novel framework for detecting Android malware based on permissions, utilizing multiple linear regression methods. Permissions play a crucial role in the security of the Android operating system, serving as fundamental indicators of an application's behavior. Through static analysis, the framework extracts application permissions and employs machine learning techniques to conduct security analyses. Specifically, the framework employs multiple linear regression techniques to develop two classifiers for permission-based Android malware detection. These classifiers leverage the relationships between various permission attributes to accurately identify potentially malicious applications. Notably, the framework achieves notable performance levels using classification algorithms without the need for overly complex models. In the project, the existing system utilizes the Random Forest (RF) algorithm, while the proposed system adopts the Support Vector Machine (SVM) algorithm. Both algorithms are evaluated in terms of accuracy, with the results demonstrating that the proposed SVM approach outperforms the existing RF method. This highlights the effectiveness of SVM in accurately detecting Android malware based on permission analysis.

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3