Efficient Fetal Health Prediction using Machine Learning

Author:

L. Mohammed Salman 1,A. Poongodi 1

Affiliation:

1. Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu

Abstract

The growth of technology in our day-to-day enterprise with advanced machines are outstanding through machine learning involving both machine learning and deep learning all over the world. Fetal monitoring during pregnancy time is the most important to save the life of the mother as well as the child. In this project, we present a ML technique that is used to measure the fetal heart rate during the time of pregnancy. The major component used for this detection is Fetal Digital stethoscope sensor which is to be placed on the abdomen of the pregnant and the signals are processed by the micro-controller used and the accurate fetal heart rate. This system is very flexible and low cost helps the patient to monitor the fetal heart rate in home. We will use ML method for our project. In this paper Fetal health is predicted by algorithms namely Decision Tree (DT) as existing and Recurrent Neural Network (RNN) as proposed and compared in terms of accuracy. From our work we can prove that our proposed RNN works better than other existing DT algorithm.

Publisher

Naksh Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3