Abstract
The experimental studies of the paramagnetic-antiferromagnetic phase transition through Mössbauer spectroscopy and measurements of temperature and field dependencies of magnetic susceptibility in the layered Cu0.15Fe0.85PS3 crystal are presented. The peculiar behavior of the magnetization - field dependence at low-temperature region gives evidence of a weak ferromagnetism in the studied alloy. By the ab initio simulation of electronic and spin subsystems, in the framework of electron density functional theory, the peculiarities of spin ordering at low temperature as well as changes in interatomic interactions in the vicinity of the Cu substitutional atoms are analyzed. The calculated components of the electric field gradient tensor and asymmetry parameter for Fe ions are close to the ones found from Mössbauer spectra values. The Mulliken populations show that the main contribution to the ferromagnetic spin density is originated from 3d-copper and 3p-sulfur orbitals. The estimated total magnetic moment of the unit cell (8.543 emu/mol) is in reasonable agreement with the measured experimental value of ∼9 emu/mol.
Publisher
Institute for Condensed Matter Physics
Subject
Physics and Astronomy (miscellaneous),Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献