The fifty-year quest for universality in percolation theory in high dimensions

Author:

Ellis T.ORCID,Kenna R.ORCID,Berche B.ORCID

Abstract

Although well described by mean-field theory in the thermodynamic limit, scaling has long been puzzling for finite systems in high dimensions. This raised questions about the efficacy of the renormalization group and foundational concepts such as universality, finite-size scaling and hyperscaling, until recently believed not to be applicable above the upper critical dimension. Significant theoretical progress has been made resolving these issues, and tested in numerous simulational studies of spin models. This progress rests upon superlinearity of correlation length, a notion that for a long time encountered resistance but is now broadly accepted. Percolation theory brings added complications such as proliferation of interpenetrating clusters in apparent conflict with suggestions coming from random-graph asymptotics and a dearth of reliable simulational guidance. Here we report on recent theoretical progress in percolation theory in the renormalization group framework in high dimensions that accommodates superlinear correlation and renders most of the above concepts mutually compatible under different boundary conditions. Results from numerical simulations for free and periodic boundary conditions which differentiate between previously competing theories are also presented. Although still fragmentary, these Monte Carlo results support the new framework which restores the renormalization group and foundational concepts on which it rests.

Publisher

Institute for Condensed Matter Physics

Subject

Physics and Astronomy (miscellaneous),Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3