Photo-switchable liquid crystalline brush as an aligning surface for liquid crystals: modelling via mesoscopic computer simulations

Author:

Yaremchuk D.ORCID,Patsahan T.ORCID,Ilnytskyi J.ORCID

Abstract

We consider the mesoscopic model for the liquid crystalline brush that might serve as a photoswitchable aligning surface for preorientation of low molecular weight liquid crystals in a bulk. The brush is built by grafting the polymer chains of a side-chain molecular architecture, with the side chains terminated by a chromophore unit mimicking the azobenzene unit, to a substrate. When irradiated with ultraviolet light, the chromophores photoisomerize into a non-mesogenic cis state and the whole system turns into an ordinary polymer brush with no orientational order and two states: the collapsed and straightened one, depending on the grafting density. When irradiated with visible light, the chromophores photoisomerize into a mesogenic trans state, resulting in formation of a transient network between chains because of a strong attraction between chromophores. Spontaneous self-assembly of the brush in these conditions results in an orientationally isotropic polydomain structure. The desired uniaxial planar ordering of chromophores within a brush can be achieved at certain temperature and grafting density intervals, as the result of a two-stage preparation protocol. An external stimulus orients chromophores uniaxially at the first stage. The system is equilibrated at the second stage at a given temperature and with the external stimulus switched off. The preoriented chromophores either keep or loose their orientations depending on the strength of the memory effect inherent to a transient network of chains that are formed during the first stage, similarly to the case of the liquid crystalline elastomers, where such effects are caused by the covalent crosslinks.

Publisher

Institute for Condensed Matter Physics

Subject

Physics and Astronomy (miscellaneous),Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3