Thermal Analysis of Oil Shale Ash-filled High-density Polyethylene Composites

Author:

Abstract

Thermal analysis was performed to evaluate the impact of the addition of oil shale ash (OSA) to high-density polyethylene (HDPE) polymer matrix using differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Extrusion and press molding processes were used to compound the OSA-filled HDPE polymer composites containing 0, 5, 15 and 25 wt% OSA, for which the thermal properties and the characteristics of the composites were studied. Investigation of the thermal properties of the OSA-HDPE composite is necessary for selecting processing conditions and the appropriate application field. The DSC results demonstrated that OSA addition only marginally affected the glass transition temperature Tg of the composite formulations. The melting temperature Tm showed a decreasing trend with increased OSA fraction, while the crystallization temperature Tcryst showed an increasing trend. The heat of fusion ∆Hm, the heat of crystallization ∆Hcryst and the percentage of crystallinity decreased on the addition of OSA filler. The TGA results demonstrated that the thermal stability of the polymer composite matches that of the neat polymer behavior up to 350 °C after which the thermal stability of the filled polymer composite increases with increased filler content. Above 360 °C, the weight loss of the neat polymer as well as of the polymer composite is accelerated up to 480 °C where all tested samples become fully degraded.

Publisher

Yarmouk University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3