Topology Structure Analysis of High Dimensional Dataset by Flattening Deformation of Data Manifold

Author:

Zhuang Xiaodong1,Mastorakis Nikos E.2

Affiliation:

1. Electronic Information College, Qingdao University, 266071 China

2. Technical University of Sofia, Industrial Engineering Department, Kliment Ohridski 8, Sofia, 1000 Bulgaria

Abstract

A new analysis method for high dimensional sets is proposed by autonomous deforming of data manifolds. The deformation is guided by two kinds of virtual interactions between data points. The flattening of data manifold is achieved under the elastic and repelling interactions, meanwhile the topological structure of the manifold is preserved. The proposed method provides a novel geometric viewpoint on high-dimensional data analysis. Experimental results prove the effectiveness of the proposed method in dataset structure analysis.

Publisher

North Atlantic University Union (NAUN)

Subject

Applied Mathematics,Computational Theory and Mathematics,Modeling and Simulation

Reference19 articles.

1. D. L. Don oho, High-Dimensional Data Analysis: The Curses and Blessing of Dimensionality. Proceedings of AMS Math-Ematical Challenges of the 21st Century, 2000.

2. Muhammad Habib ur Reh man, Chee Sun Liew, Assad Abbas, Prem Prakash Jayaraman, Teh Ying Wah & Samee U. Khan . Big D ata Reduction Methods: A Survey. Data Science and Engineering 1, 265–284 (2016).

3. Daniel Engel, Lars Huttenberger, Bernd Hamann, A Survey of Dimension Reduction Methods for High-dimensional Data Analysis and Visualization, Visualization of Large and Unstructured Data Sets: Applications in G eospatial Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011, pp. 135-149.

4. Xuan Huang, Lei Wu , Yinsong Ye, A Review on Dimensionality Reduction Techniques, International Journal of Pattern Recognition and Artificial IntelligenceVol. 33, No. 10, 1950017 (2019).

5. Shaeela Ayesha, Muhammad Kashif Hanif, Ramzan Talib, Overview and comparative study of dimensionality reduction techniques for high dimensional data, Information Fusion, Vol. 59, 2020, pp. 44-58.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3