Application of Two-dimensional Finite Volume Method to Protoplanetary Disks

Author:

Chakkour Tarik1

Affiliation:

1. LGPM, CentraleSup´elec, Universit´e Paris-Saclay, Centre Europ´een de Biotechnologie et de Bio´economie (CEBB), 3 Rue des Rouges-Terres, 51110 Pomacle, France

Abstract

Many fascinating astrophysical phenomena can be simulated insufficiently by standard numerical schemes for the compressible hydrodynamics equations. In the present work, a high performant 2D hydrodynamical code has been developed. The model is designed for the planetary formation that consists of momentum, continuity and energy equations. Since the two-phase model seems to be hardly executed, we will show in a simplified form, the implementation of this model in one-phase. It is applied to the Solar System that such stars can form planets. The finite volume method (FVM) is used in this model. We aim to develop a first-order well-balanced scheme for the Euler equations in the the radial direction, combined with second-order centered ux following the radial direction. This conception is devoted to balance the uxes, and guarantee hydrostatic equilibrium preserving. Then the model is used on simplified examples in order to show its ca- pability to maintain steady-state solutions with a good precision. Additionally, we demonstrate the performance of the numerical code through simulations. In particularly, the time evolution of gas orbited around the star, and some proper- ties of the Rossby wave instability are analyzed. The resulting scheme shows consequently that this model is robust and simple enough to be easily implemented.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3