Using Machine Learning Algorithms to Detect Anomalies in the Solar Heating System

Author:

Kunelbayev Murat1,Assel Abdildayeva2,Guldana Taganova3

Affiliation:

1. Al Farabi Kazakh National University, Institute of Information and Computer Technologies, Almaty, 05000, Kazakhstan

2. Al-Farabi Kazakh National Universitу, Almaty, 05000, Kazakhstan

3. L.N.Gumilov Eurasian National University, Nur-Sultan, 05000, Kazakhstan

Abstract

This article explores the use of machine learning algorithms to identify anomalies in the solar heating system. A solar heating system that has been developed consists of several parts to simplify the description and modeling process. The authors propose a new architecture for neural networks based on ordinary differential equations. The idea is to apply the new architecture for practical problems of accident prediction (the problem of extrapolation of time series) and classification (classification of accidents based on historical data). The developed machine learning algorithms, artificial intelligence techniques, the theory of differential equations - these directions allow us to build a model for predicting the system's accident rate. The theory of database management (non-relational databases) - these systems allow you to establish the optimal storage of large time series.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,General Physics and Astronomy

Reference15 articles.

1. RENA, 2018. Opportunities to accelerate national energy transitions through advanced deployment of renewables

2. Niu, G., 2017. Data-Driven Technology for Engineering Systems Health Management. Springer Singapore, Singapore.

3. Lui, Y., Zhao, G., Peng, X., Hu, C., 2017. Lithiumion battery remaining useful life prediction with long short-term memory recurrent neural network. Annu. Conf. Progn. Heal. Manag. Soc. 1–7.

4. de Keizer, A.C., Vajen, K., Jordan, U., 2011. Review of long-term fault detection approaches in solar thermal systems. Sol. Energy 85, 1430–1439.

5. Ghritlahre, H.K., Prasad, R.K., 2018. Application of ANN technique to predict the performance of solar collector systems - A review. Renew. Sustain. Energy Rev. 84, 75–88.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3