Demodulation and Vibration Signal Systems for Photonic Fiber Optic Pressure Sensor

Author:

Kalizhanova Aliya1,Kunelbayev Murat2,Wojcik Waldemar3,Kozbakova Ainur2,Urmashev Baydaulet2,Akhsutova Assiyat4

Affiliation:

1. Institute of Information and Computational Technologies CS MSHE RK, Almaty University of Power Engineering and Telecommunications after G. Daukeyev, Almaty 050040, Kazakhstan

2. Institute of Information and Computer Technologies, Al- Farabi Kazakh National University, Almaty 050040, Kazakhstan

3. Lublin University of Technologies, Lublin, 20-618, Poland

4. Almaty University of Power Engineering and Telecommunications after G. Daukeyev, Almaty 050040, Kazakhstan

Abstract

The article describes the optical elements of signal demodulation and polling systems from photonic pressure sensors on inclined fiber Bragg gratings, which are often used to measure the refractive index (RI). A new design of a photonic fiber-optic Bragg pressure sensor with an inclined lattice has been developed, which is connected to standard multimode fibers with an inclined Bragg lattice connected to a metal diaphragm, which is a deformed inclined cantilever. The light source is polarized using the first polarizer and directed to the photonic crystal fiber in such a way as to excite multimode fibers. In this work, a method was developed for determining the optical elements of the spectral contour length system, which consists of setting the cut-off wavelength and then determining the accompanying refractive index. An experimental study determined the curve of the chain length change in the set. To process random signals, the spatial correlation method is used in combination with an approach to digital images based on the number of lanes and the direction of movement. The experimental results differ from the theoretical ones by about 4%. The developed correlation method reflects frequency as well as randomness, it is used in the photographic process together with the image correction given in this document.

Publisher

North Atlantic University Union (NAUN)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3