Abstract
This article presents a stochastic computational model for the analysis of the reliability of a drawn steel bar. The whole distribution of the limit state function is studied using global sensitivity analysis based on Cramér-von Mises distance. The algorithm for estimating the sensitivity indices is based on one loop of the Latin Hypercube Sampling method in combination with numerical integration. The algorithm is effective due to the approximation of resistance using a threeparameter lognormal distribution. Goodness-of-fit tests and other comparative studies demonstrate the significant accuracy and suitability of the three-parameter lognormal distribution, which provides better results and faster response than sampling-based methods. Global sensitivity analysis is evaluated for two load cases with proven dominant effect of the long-term variation load action, which is introduced using Gumbel probability density function. The Cramér-von Mises indices are discussed in the context of other types of probability-oriented sensitivity indices whose performance has been studied earlier.
Publisher
North Atlantic University Union (NAUN)
Subject
Electrical and Electronic Engineering,General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献