Tribological Properties of Polymer Composite with Impregnated Quasicrystal Nanoparticles

Author:

Utkin Y. A.1,Orekhov A. A.1,Hein Thant Zin2

Affiliation:

1. Moscow Aviation Institute (National Research University), Moscow, Volokolamskoe shosse, 4, 125993, Russia

2. Defense Services Technological Academy (DSTA), Mandalay Lashio Highway, Pyin Oo Lwin, Mandalay Division, Myanmar

Abstract

In this work, a study is carried out on the introduction of quasicrystal particles into a thermoplastic polymer and it is shown that this leads to changes in the structure of polyethylene. The introduction of quasicrystal particles into a thermoplastic polymer leads to changes in the structure of polyethylene: the degree of crystallinity decreases from 42% (PE) to 27% (10AlCuFe/PE) with increasing concentration of the filler, the ratio of bands corresponding to amorphous and crystalline regions in the IR spectra changes, which indicates on the amorphization of the PE structure. The specimens have improved wear resistance (the wear rate decreased by 96% compared to the original PE), but the friction coefficient remained practically unchanged. It is shown that the addition of quasicrystal nanoparticles in a small amount (up to 10 wt.%) leads to an increase in hardness, but does not have a noticeable effect on the surface roughness. The results obtained indicate that quasicrystals can serve as effective fillers for promising polymeric materials in products for aerospace, instrument making, and other industries.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3