Analysis of the Thermal Characteristics and Energy performance of Electro Chromic Glazing window

Author:

Mathew Veena1,Kurian Ciji Pearl1,Augustine Nevin2,Srinivasan C. R.2

Affiliation:

1. Dept. of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of higher Education, Manipal, 576104, India

2. Dept. of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of higher Education, Manipal, 576104, India

Abstract

Windows and shading devices occupy an essential part between inside and outside environment of buildings, for providing interior air quality and optimization of lighting and HVAC energy consumption. This paper aims to perform the thermal performance of double pane Electrochromic window (ECW) using Finite Element Method and the energy performance using the Building Information Modelling (BIM) tool. The thermal model of the ECW is simulated in COMSOL Multiphysics. Double pane glass with and without electrochromic (EC) layer is analyzed to obtain the average and maximum surface temperature between the top and bottom layers of the glazing. It is observed that the maximum temperature gradient is observed with EC layer. The energy performance with a double glazing and ECW for warm and humid climate is evaluated using eQUEST DOE tool. A 30 % reduction is observed in the annual energy consumption with an ECW compared to that with a double-glazing window. In addition, during the monthly evaluation of energy consumption, there is 10% reduction with the ECW compared to baseline. The appreciable thermal characteristics and the energy performance of the EC glazing proves it to be an alternative solution for normal window glazing in automated buildings for thermal comfort and lesser cooling load demand.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3