A Robust Feature Extraction and Deep Learning Approach for Cancer Gene Prognosis

Author:

Kamala Kumari P1,Seventline Joseph Beatrice2

Affiliation:

1. Deptartment of Electronics and Communication Engineering, Muffakham Jah College of Engineering and Technology, Hyderabad, India

2. Department of Electronics and Communication Engineering, GITAM University, Visakhapatnam, India

Abstract

Mutated genes are one of the prominent factors in origination and spread of cancer disease. Here we have used Genomic signal processing methods to identify the patterns that differentiate cancer and non-cancerous genes. Furthermore, Deep learning algorithms were used to model a system that automatically predicts the cancer gene. Unlike the existing methods, two feature extraction modules are deployed to extract six attributes. Power Spectral Density based module was used to extract statistical parameters like Mean, Median, Standard deviation, Mean Deviation and Median Deviation. Adaptive Functional Link Network (AFLN) based filter module was used to extract Normalized Mean Square Error (NMSE). The uniqueness of this paper is identification of six input features that differentiates cancer genes. In this work artificial neural network is developed to predict cancer genes. Comparison is done on three sets of datasets with 6 attributes, 5 attributes and one attribute. We performed all the training and testing on the Tensorflow using the Keras library in Python using Google Colab. The developed approach proved its efficiency with 6 attributes attaining an accuracy of 98% for 150 epochs. The ANN model was also compared with existing work and attained a 10 fold cross validation accuracy of 96.26% with an increase of 1.2%.

Publisher

North Atlantic University Union (NAUN)

Subject

General Biochemistry, Genetics and Molecular Biology,Biomedical Engineering,General Medicine,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3