A Prediction Method of Network Security Situation based on QPSO-SVM

Author:

Zhang Jian-an1,Luo Hui1

Affiliation:

1. Kunming Branch, No.3 College, PLA Information Engineering University, Kunming650231, Yunnan, China

Abstract

In network security situation awareness system, situation prediction is the key point. The traditional intrusion detection method lacks scalability in the face of the changing network structure and lacks adaptability in the face of unknown attack types. In order to ensure and improve the accuracy of situation prediction, a QPSO-SVM prediction model is proposed by combining the optimization performance of quantum particle swarm optimization and the prediction accuracy of support vector machines. By adding the original sequence to the original sequence, this model weakens the irregular disturbance in the original sequence and enhances the regularity of the sequence. Compared with the traditional SVM and PSOSVM, the superiority of the prediction precision is better, the prediction accuracy can be ensured, and the validity of the model is tested by the simulation experiment.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3