Short-Term Load Forecasting of Power System Based on Improved BP Neural Network

Author:

Li Sufen1

Affiliation:

1. School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

Power system load is a stochastic and non-stationary process. Due to the influence of various factors, some bad data may exist in the load observation value. These data are mixed into the normal load data to participate in the training of neural network, which seriously affects the accuracy of load forecasting. Short-term load forecasting is the basis of power system operation and analysis, improving the precision of load forecasting is an important means to ensure the scientific decision-making of power system optimization. In order to improve the precision of short term load forecasting in power system, a short-term load forecasting model based on genetic algorithm is proposed to optimize BP neural network. Firstly, using genetic algorithm to optimize the initial weights and thresholds of BP neural network to improve the prediction accuracy of BP neural network; Through the comparison and analysis before and after the model optimization, the experimental results with smaller prediction error were obtained. The simulation results show that the short-term load forecasting model established by this method has faster convergence rate and higher prediction precision.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3