Affiliation:
1. School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Abstract
Power system load is a stochastic and non-stationary process. Due to the influence of various factors, some bad data may exist in the load observation value. These data are mixed into the normal load data to participate in the training of neural network, which seriously affects the accuracy of load forecasting. Short-term load forecasting is the basis of power system operation and analysis, improving the precision of load forecasting is an important means to ensure the scientific decision-making of power system optimization. In order to improve the precision of short term load forecasting in power system, a short-term load forecasting model based on genetic algorithm is proposed to optimize BP neural network. Firstly, using genetic algorithm to optimize the initial weights and thresholds of BP neural network to improve the prediction accuracy of BP neural network; Through the comparison and analysis before and after the model optimization, the experimental results with smaller prediction error were obtained. The simulation results show that the short-term load forecasting model established by this method has faster convergence rate and higher prediction precision.
Publisher
North Atlantic University Union (NAUN)
Subject
Electrical and Electronic Engineering,Signal Processing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献