Riemann Zeta Based Surge Modelling of Continuous Real Functions in Electrical Circuits

Author:

Thankappan Binesh1

Affiliation:

1. Govt. Model Engineering College-APJ Abdul Kalam Technological University, Ernakulam, India - 682021

Abstract

Riemann zeta is defined as a function of a complex variable that analytically continues the sum of the Dirichlet series, when the real part is greater than unity. In this paper, the Riemann zeta associated with the finite energy possessed by a 2mm radius, free falling water droplet, crashing into a plane is considered. A modified zeta function is proposed which is incorporated to the spherical coordinates and real analysis has been performed. Through real analytic continuation, the single point of contact of the drop at the instant of touching the plane is analyzed. The zeta function is extracted at the point of destruction of the drop, where it defines a unique real function. A special property is assumed for some continuous functions, where the function’s first derivative and first integral combine together to a nullity at all points. Approximate reverse synthesis of such a function resulted in a special waveform named the dying-surge. Extending the proposed concept to general continuous real functions resulted in the synthesis of the corresponding function’s Dying-surge model. The Riemann zeta function associated with the water droplet can also be modeled as a dying–surge. The Dying- surge model corresponds to an electrical squeezing or compression of a waveform, which was originally defined over infinite arguments, squeezed to a finite number of values for arguments placed very close together with defined final and penultimate values. Synthesized results using simulation software are also presented, along with the analysis. The presence of surges in electrical circuits will correspond to electrical compression of some unknown continuous, real current or voltage function and the method can be used to estimate the original unknown function.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3