Consumers’ Purchase Behavior Preference in E-Commerce Platform Based on Data Mining Algorithm

Author:

Yang Wenjun1,Guo Jia2

Affiliation:

1. School of E-commerce and Logistics Management, Henan University of Economics and Law, Zhengzhou 450000, China

2. Department of Electronics and Information, Zhengzhou Sias University, Zhengzhou 450000, China

Abstract

E-commerce platform can recommend products to users by analyzing consumers’ purchase behavior preference. In the clustering process, the existing methods of purchasing behavior preference analysis are easy to fall into the local optimal problem, which makes the results of preference analysis inaccurate. Therefore, this paper proposes a method of consumer purchasing behavior preference analysis on e-commerce platform based on data mining algorithm. Create e-commerce platform user portrait template with consumer data records, select attribute variables and set value range. This paper uses data mining algorithm to extract the purchase behavior characteristics of user portrait template, takes the characteristics as the clustering analysis object, designs the clustering algorithm of consumer purchase behavior, and grasps the common points of group behavior. On this basis, the model of consumer purchase behavior preference is established to predict and evaluate the behavior preference. The experimental results show that the accuracy rate of this method is 91.74%, the recall rate is 88.67%, and the F1 value is 90.17%, which are higher than the existing methods, and can provide consumers with more satisfactory product information push.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of E-Commerce Platform based on Data Mining using Standard Loss Function based Hierarchical Fuzzy Clustering;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

2. Taobao transaction data mining based on time series evaluation under the background of big data;Intelligent Decision Technologies;2023-09-11

3. Design of a Real-Time Pricing System for E-commerce;International Journal of Computer Theory and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3