A Wiener Model Based Closed Loop FES for Positional Control During Wrist Flexion

Author:

Mahendra S. J.,1,Talasila Vishwanath2,Dutt Abhilash G.3

Affiliation:

1. Research Scholar Dept of Medical Electronics, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India

2. Dept of Electronics and Telecommunication Center for Imaging Technologies, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India

3. Dept of Medical Electronics, M S Ramaiah Institute of Technology, Bangalore, Karnataka, India

Abstract

Functional electrical stimulation is an assistive technique used to produce functional movements in patients suffering from neurological impairments. However, existing open-loop clinical FES systems are not adequately equipped to compensate for the nonlinear, time-varying behaviour of the muscles. On the other hand, closed-loop FES systems can compensate for the aforementioned effects by regulating the stimulation to induce desired contractions. Therefore, this work aims to present an approach to implement a closed-loop FES system to enable angular positional control during wrist flexion. First, a Wiener model describing the response of the wrist flexor to pulse width modulated stimulation was identified for two healthy volunteers. Second, a nonlinear PID controller (subject-specific) was designed based on the identified models to enable angular positional control during wrist flexion. Subsequently, the controller was implemented in real-time and was tested against two reference angles on healthy volunteers. This study shows promise that the presented closed-loop FES approach can be implemented to control the angular position during wrist flexion or a novelty of the work when compared with the existing work.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Techniques for Automated Tremor Detection in the Presence of External Stressors;International Journal of Circuits, Systems and Signal Processing;2022-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3