Study of the Discrete Wavelet Transform based Designed System under Different Simulation Conditions

Author:

Garg Simmi1,Sharma Anuj Kumar2,Tyagi Anand Kumar3

Affiliation:

1. Department of Physics, I K G Punjab Technical UniversityKapurthala-Jalandhar Highway, Kapurthala, also with Department of Physics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India

2. Department of Mathematics, L R DAV College, Jagraon, Punjab, India

3. Department of Applied Physics, S B S State Technical Campus, Ferozepur, Punjab, India

Abstract

Wavelet Transforms is an Important Part of, Systems Theory and Signal Processing and finds numerous important applications in Science and Engineering. In this paper, we investigated the performance of proposed scheme coded Discrete wavelet transform based Orthogonal frequency division multiplexing scheme over Additive white Gaussian noise channel using Pulse Amplitude Modulation in terms of Energy bits per noise ratio values. The simulation has been done using MATLAB software and results are compared with ½ rate convolution coded Discrete wavelet transform based Orthogonal frequency division multiplexing system. It is found by MATLAB simulations that the performance of proposed scheme coded Discrete wavelet transform based Orthogonal frequency division multiplexing outperforms than that of ½ rate convolution encoded Discrete wavelet transform based Orthogonal frequency division multiplexing with 16-Pulse Amplitude Modulation. Along with this, different orders of reverse biorthogonal and biorthogonal wavelets are implemented to simulate the proposed system with 16-Pulse Amplitude Modulation scheme. The performance of proposed system is compared and it is found that proposed system performs better than conventional system under all different simulation conditions. This study finds important applications in Signal Processing.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3