Adaptive Infinite Impulse Response System Identification Using Elitist Teaching-Learning- Based Optimization Algorithm

Author:

Ramalakshmanna Y.1,Shanmugaraja Dr P.2,Raju Dr P. V. Rama3,Hymalakshmi Dr T.V.3

Affiliation:

1. Research Scholar, Annamalai University, Chidambaram, Tamil Nadu, India

2. Annamalai University, Chidambaram, Tamil Nadu, India

3. SRKR Engineering College, Chinaamiram (Post) Bhimavaram, West Godavari (Dist)534204, India

Abstract

Infinite Impulse Response (IIR) systems identification is complicated by traditional learning approaches. When reduced-order adaptive models are utilised for such identification, the performance suffers dramatically. The IIR system is identified as an optimization issue in this study. For system identification challenges, a novel population-based technique known as Elitist teacher learner-based optimization (ETLBO) is used to calculate the best coefficients of unknown infinite impulse response (IIR) systems. The MSE function is minimised and the optimal coefficients of an unknown IIR system are found in the system identification problem. The MSE is the difference between an adaptive IIR system's outputs and an unknown IIR system's outputs. For the unknown system coefficients of the same order and decreased order cases, exhaustive simulations have been performed. In terms of mean square error, convergence speed, and coefficient estimation, the results of actual and reduced-order identification for the standard system using the novel method outperform state-of-the-art techniques. For approximating the same-order and reduced-order IIR systems, four benchmark functions are examined utilizing GA, PSO, CSO, and BA. To demonstrate the improvements, the approach is evaluated on three conventional IIR systems of 2nd, 3rd, and 4th order models. On the basis of computing the mean square error (MSE) and fitness function, the suggested ETLBO approach for system identification is proven to be the best among others. Furthermore, it is confirmed that the suggested ETLBO method outperforms some of the other known system identification strategies. Finally, the efficiency of the dynamic nature of the control parameters of DE, TLBO, and BA in finding near parameter values of unknown systems is demonstrated through comparison data. The simulation results show that the suggested system identification approach outperforms the current methods for system identification.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3