Algorithms for Classification of Signals Derived From Human Brain

Author:

Dimitrov Georgi P.1,Panayotova Galina2,Jekov Boyan1,Petrov Pavel3,Kostadinova Iva1,Petrova Snejana4,Bychkov Olexiy S.5,Martsenyuk Vasyl6,Parvanov Aleksandar7

Affiliation:

1. University of Library Studies and Information Technologies Sofia, Bulgaria

2. University of Library Studies and Information Technologies, Sofia, Bulgaria

3. University of Economics Varna, Bulgaria

4. University of Library Studies and Information Technologies Sofia, Bulgaria

5. Taras Shevchenko National University of Kyiv Kyiv Ukraina

6. Univerciti of Bielsko Biala Poland

7. University of Library Studies and Information Technolog

Abstract

Comparison of the Accuracy of different off-line methods for classification Electroencephalograph (EEG) signals, obtained from Brain-Computer Interface (BCI) devices are investigated in this paper. BCI is a technology that allows people to interact directly or indirectly with their environment only by using brain activity. But, the method of signal acquisition is non-invasive, resulting in significant data loss. In addition, the received signals do not contain only useful information. All this requires careful selection of the method for the classification of the received signals. The main purpose of this paper is to provide a fair and extensive comparison of some commonly employed classification methods under the same conditions so that the assessment of different classifiers will be more convictive. In this study, we investigated the accuracy of the classification of the received signals with classifiers based on AdaBoost (AB), Decision Tree (DT), k-Nearest Neighbor (kNN), Gaussian SVM, Linear SVM, Polynomial SVM, Random Forest (RF), Random Forest Regression ( RFR ). We used only basic parameters in the classification, and we did not apply fine optimization of the classification results. The obtained results show suitable algorithms for the classification of EEG signals. This would help young researchers to achieve interesting results in this field faster.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative Analysis of EEG Signal Profiles;2023 13th International Conference on Advanced Computer Information Technologies (ACIT);2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3